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Abstract

Drop size distributions were measured in agitated non-Newtonian ¯uid systems using a 0.09 m diameter mechanically stirred tank. The

dispersion process was carried out in the absence of coalescence by keeping the dispersed phase volume fraction at less than 0.005.

Aqueous solutions of carboxymethyl cellulose and xanthan gum were used as the continuous phase with palm oil forming the dispersed

phase. Additionally, agar solutions were used as the dispersed phase with salad oil as the continuous phase, which is weakly non-

Newtonian. It was experimentally found that the non-Newtonian characteristics of the continuous phase caused an increase in the maximum

drop size, particularly at low impeller speeds and wide drop size distributions. The Sauter drop diameter was proportional to the maximum

drop diameter in non-Newtonian and Newtonian ¯uid systems. Models for drop breakage in a stirred tank have been developed to account

for the effect of non-Newtonian ¯ow behaviour. The boundary-layer shear force concept was applied to discuss the in¯uence of non-

Newtonian ¯ow behaviour on the shear stress acting on the drop and drop break-up in a stirred tank. It was found that the experimental data

correspond to the boundary-layer shear force models in non-coalescing systems. # 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

In the chemical, biochemical, food and pharmaceutical

industries, two-liquid-phase dispersion is a process of con-

siderable importance [1]. The dispersions are commonly

formed by mechanical agitation of the liquid±liquid sys-

tems. The size of the drops and their dynamics play a very

important role in the mass transfer and chemical reactions

taking place in a stirred tank [1±3]. Therefore, the literature

on the relationship between drop size, physical properties

and operating conditions, including agitation speed, is very

extensive. However, most of the information available

relates only to Newtonian systems. Lagisetty et al. [4]

and Koshy et al. [5] discussed the effect of non-Newtonian

¯ow behaviour of the dispersed phase on drop breakage. The

non-Newtonian behaviour of the continuous phase has not

been studied, except for the work of Boye et al. [3], in which

the increase in the apparent viscosity of the dispersion due to

the increase in the dispersed phase concentration was inves-

tigated. Although non-Newtonian ¯uids are frequently

encountered, information available on drop break-up in

non-Newtonian liquid systems is limited. In particular, little

published work is available on the aspect of the non-New-

tonian ¯ow behaviour of the continuous phase. The turbulent

eddy drop break-up mechanism gives a good description of

the maximum drop diameter provided that the ¯ow in the

stirred tank is fully turbulent [6±8]. However, there are many

situations in which the ¯ow is not fully turbulent. In parti-

cular, when the continuous phase is viscous, the intensity of

turbulence is insuf®cient to justify the application of the

Kolmogoroff theory of isotropic turbulence [3]. The bound-

ary-layer shear force model is based on the mechanism in

which drop break-up is considered to occur in the boundary

layer on the impeller surface. This concept has been exam-

ined by several investigators [9±13]. Their work was limited

to systems in which the continuous phase is Newtonian. No

model has been proposed for drop break-up in stirred tanks

with non-Newtonian continuous phases in the available

literature. It is clear, therefore, that more experimental

and theoretical studies for drop breakage in non-Newtonian

¯uid systems are desirable.

The present study focuses on the effect of continuous

phase non-Newtonian ¯ow behaviour on drop breakage.

Drop sizes and drop size distributions are measured in

non-Newtonian ¯uid systems. In general, the drop size
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distribution obtained in a stirred tank is the result of drop

breakage and coalescence occurring simultaneously. In the

present study, however, the dispersed phase volume fraction

is limited to less than 0.005; therefore, the dispersion

process is assumed to be mainly controlled by the break-

up of drops. Models are developed for drop breakage in non-

Newtonian liquid systems on the basis of the boundary-layer

shear force mechanism and their applicability is examined

using the present experimental data and the available cor-

relations for the maximum drop sizes.

2. Experimental details

Experiments were conducted in a 0.090 m internal dia-

meter ¯at-bottomed polyvinyl chloride vessel under fully

baf¯ed conditions. A schematic diagram of the apparatus,

including all dimensions, is given in Fig. 1. Agitation was

provided by a six-¯at-blade stainless steel Rushton turbine

impeller of 0.049 m in diameter. It was positioned centrally

in the stirred tank at a distance of 0.5DT from the base of the

tank. The impeller speed was varied from 3.75 to 11.7 sÿ1.

The liquid temperature in the tank was controlled at

323.15 � 0.5 K.

Table 1 summarizes the physical properties of the liquids

used in this work. Aqueous solutions of carboxymethyl

cellulose (CMC) and xanthan gum (XG) were used to study

the effect of non-Newtonian ¯ow behaviour of the contin-

uous phase. Rheological measurements were carried out

using a coaxial cylinder viscometer (Fann Instrument,

Model 35) at shear rates of 1.5±3254 sÿ1. The rheological

properties were assumed to be represented by a power-law

model

� � K _
n (1)

This ¯ow model has been widely used for shear dependent

viscosity, i.e. shear thinning (n < 1) and shear thickening

(n > 1). When n � 1, Eq. (1) represents Newtonian viscos-

ity and K is equivalent to �. The agar solutions, which were

used to examine the in¯uence of dispersed-phase viscous

forces on the mean drop size and drop size distribution, also

represented weakly non-Newtonian ¯ow behaviour. Inter-

facial tension was measured by the falling drop method [11].

In order to achieve the equilibrium drop size, the mixing was

Fig. 1. Schematic diagram of the stirred tank. Dimensions in millimeters.

Table 1

Properties of continuous and dispersed phases at 323.15 � 0.5 K

Continuous phase Dispersed phase

�c nc Kc � �c �d �d nd Kd

(kg mÿ3) (Pa sn) (N mÿ1) (Pa s) (kg ÿ3) (Pa s) (Pa sn)

System I

Palm oil 891 0.0222

Water 988 1 0.0005 0.0201

Glycerol 1245 1 0.145 0.0135

0.01%CMC 988 0.913 0.0036 0.0200

0.05%CMC 988 0.650 0.0483 0.0199

0.10%CMC 988 0.635 0.0835 0.0196

0.15%CMC 989 0.614 0.131 0.0195

0.20%CMC 989 0.604 0.173 0.0194

0.50%CMC 991 0.544 0.655 0.0189

0.01%XG 988 0.757 0.0069 0.0200

0.25%XG 989 0.436 0.374 0.0192

0.50%XG 991 0.265 2.10 0.0189

System II

2% Agar solution 999 0.840 0.039

Salad oil 901 0.0126 0.0205
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run for at least 1 h before sampling the suspension [8,11,14].

In order to con®rm that a steady state was attained, samples

were drawn from the vessel at every 30 min for 3 h. It was

found that, in this experiment, the time required to achieve a

steady state was about 1 h as in previous investigations

[8,11,14]. The siphoned sample was poured into iced water

or cold salad oil to freeze the drops rapidly [7,15]. The

photographic system consisted of a CCD camera, and a

microscope was used to measure the drop sizes. A minimum

of 200 drops were examined to establish the values of the

maximum drop diameter Dmax and the Sauter mean drop

diameter D32 and the drop size distributions [4,14,16,17].

The dispersed phase volume fraction was limited to

� < 0.005 to ensure that a dilute non-coalescing suspension

resulted [8].

3. The boundary-layer shear force model

Hinze [6] established a basis for drop break-up in which

surface and dispersed phase viscous forces contribute to

drop stability

� �
�� �d

����������
�=�d

p� �
D

(2)

This relationship indicates that the shear stress imposed by

the continuous phase acts to deform a drop and to break it

when the counter-balancing surface tension forces and

viscous stresses inside the drop are overcome. Eq. (2) has

been widely used to develop correlations for an estimation

of the maximum drop diameter. Many expressions have

been proposed for the shear stress depending on whether the

continuous phase is laminar or turbulent. For fully turbulent

¯ow conditions, the turbulent eddy drop break-up mechan-

ism is very useful for predicting the drop size. There are

many situations in which the ¯ow ®eld is not fully turbulent.

In general, drop breakage mainly occurs in a small zone

outside the edge of the impeller in a stirred tank [11]. The

impeller would be expected to have the highest shear rate.

We have assumed that the boundary layer around the blades

of a rotating Rushton turbine controls the drop break-up and

have developed a model based on this mechanism. Since the

minimization of coalescence events is accomplished by

maintaining low dispersed phase fractions, coalescence

occurring in the region away from the impeller is not

considered. Strong shearing in a boundary layer on the

blade leads to drop break-up (Fig. 2). This mechanism

has been examined by Boye et al. [3], Leng and Quarderer

[9], Cherry and Papoutsakis [10] and Kumar et al. [11].

However, their examinations were not completed and,

furthermore, were limited only to Newtonian continuous

phase systems. We have developed a new model for drop

breakage in non-Newtonian liquid continuous phase sys-

tems. It should be noted that a number of simplifying

assumptions are made because of the complex ¯ow ®eld

in the vicinity of the impellers.

It has been pointed out [18±20] that the dispersed phase

viscosity has a signi®cant in¯uence on the maximum drop

size. Therefore, we consider the following relationship

instead of Eq. (2)

� �
�� f �d=�c� ��d

����������
�=�d

ph i
D

(3)

The viscosity ratio function f(�d/�c) is additionally intro-

duced to the viscous stress term [14]. By considering the

deformation of the drops in shear ¯ow [21] and the motion

of the drops [22], the function of the ratio of viscosity is

assumed to be

f
�d

�c

� �
� 1� 1:5��d=�c�

1� ��d=�c� (4)

This relationship suggests that the maximum drop size

increases with increasing �d/�c or �d. This trend coincides

with the experimental results obtained by Nishikawa et al.

[23] and the model proposed by Lagisetty et al. [4]. The

dispersed phase viscosity has a stabilizing effect on the

deformation and break-up of drops. In the limit �d! 0, we

have f(�d/�c) � 1 and Eq. (3) yields Eq. (2). For �d!1,

we obtain f(�d/�c) � 1.5. The range of the viscosity ratio

correction factor reported by Davies [19] is from 0.7 to 1.4.

In order to take into account non-Newtonian ¯ow behaviour

in Eqs. (2)±(4), � is replaced by �app based on Metzner and

Otto's [24] concept of an average shear rate

�app � K�ksN�nÿ1
(5)

The proportionality constant ks is generally dependent on

the impeller geometry and is given by Skelland [25].

The maximum shear stress on the drop surface for New-

tonian liquid systems has been evaluated to be three times

the average shear stress [10]

�laminar � 3�c _
 (6)

On the basis of the above relationship, we assume that the

shear stress responsible for drop break-up in non-Newtonian

liquid systems may be written as

�� laminar � 3�laminar � 3Kc _
nc � 3Kc
U

�laminar

� �nc

� 3Kc
�NDI

�laminar

� �nc

(7)

Fig. 2. Drop break-up in the boundary layer (boundary-layer shear force

model).
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where the laminar boundary layer thickness � is given as

[25]

�laminar � 280

39
�nc � 1� 3

2

� �nc
� �1=�nc�1�

� xnc��NDI�2ÿnc�c

Kc

( )ÿ1=�nc�1�
x (8)

The characteristic liquid velocity U and length x are

assumed to be the liquid velocity at the tip of the disk

�NDI and the impeller blade width, respectively. Using

Eqs. (3), (7) and (8), we can estimate the maximum

drop size Dmax in non-Newtonian laminar liquid systems.

In the boundary layer on the blade, a drop experiences

strong shearing action, leading to its breakage provided

that the drop diameter is smaller than the boundary layer

thickness.

The drop passing through the turbulent boundary layer

may experience a different shear stress compared with the

laminar boundary layer. The shear stress in the non-New-

tonian turbulent boundary layer may be written as [25]

�turbulent � 
�1ÿ�
c 8ncÿ1KC

3nc � 1

4nc

� �nc
� ��

� �ÿ�nc

turbulent��NDI�2ÿ��2ÿnc� (9)

The boundary layer thickness is written as

�turbulent �
"
��nc � 1�


	
8ncÿ1 3nc � 1

4nc

� �nc
� ��

� xnc��NDI�2ÿnc�c

Kc

( )ÿ�#1=�nc�1

x (10)

where

	 � 2ÿ ��2ÿ nc�
2�1ÿ � � �nc� ÿ

2ÿ ��2ÿ nc�
2ÿ 2� � 3�nc

and


 � ��0:817�2ÿ��2ÿnc�

2�nc�1

The values of � and � in the above equations, which are

functions of the ¯ow index n, and are given in the ®gures

presented by Dodge and Metzner [26], are approximately

represented by the following equations

� � nc

1010:278

� �1=9:2767

(11)

and

� � 0:25058nÿ0:21981
c (12)

The shear stress responsible for drop break-up in the

turbulent boundary layer on the blade may be written as

�� turbulent � C�turbulent (13)

The turbulent boundary layer on the blade may be very

complicated in a highly chaotic fashion [11]. At any location

along the blade, the shear rates in a direction perpendicular

to the blade, as well as in the direction along the blade, are

disturbed in a highly non-linear fashion. In the literature,

moreover, the turbulent intensity factor near the impeller tip

where the break-up process occurs is between 8 and 70 [17].

Therefore, the proportionality coef®cient C in the above

equation was tentatively assumed to be

C � 50 7� 10ÿ4nc
xnc��NDI�2ÿnc�c

Kc

( )" #f9n3
c�ncÿ1�g

(14)

For nc � 1 (Newtonian ¯uids), C � 50. It is dif®cult to

determine the value of C through a simple analysis because

of the complicated liquid ¯ow ®eld in a stirred tank,

especially around the blades of the impeller at high Rey-

nolds numbers. Consequently, the resulting adjustable para-

meter C for turbulent ¯ows was rather complicated.

Fig. 3 shows the variation of Dmax with the ¯ow index n

for the laminar ¯ow region. For reference, the effects of the

¯ow index on the boundary layer thickness � and shear stress

� are also presented in Fig. 3. The model predicts that the

maximum drop diameter will increase with increasing shear

thinning or decreasing ¯ow index in the laminar ¯ow region.

With increasing shear thinning, the shear stress tending to

deform the drop decreases and, as a result, the maximum

drop diameter increases, as well as the predictions for the

high Reynolds number region.

4. Results and discussion

Figs. 4 and 5 show the maximum drop diameter for low

Reynolds numbers plotted against the impeller speed. As the

impeller speed increases, the maximum drop size decreases.

Fig. 4 shows a comparison between the experimental results

Fig. 3. Effects of non-Newtonian flow behaviour on Dmax, � and � in the

low Reynolds number region (x � 0.014 (m), DI � 0.049 (m), N � 10

(sÿ1), Kc � 1.0 (Pa sn), �c � 988 (kg mÿ3), �d � 0.0005 (Pa s),

�d � 0.0222 (kg mÿ3), � � 0.0200 (N mÿ1)).
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for Dmax in the low Reynolds number region and the

theoretical predictions. The results predicted by the pro-

posed model, Eqs. (3), (7) and (8), are given by the full line.

The agreement between the experimental results for gly-

cerol, 0.50%CMC and 0.50%XG and the predictions of the

model developed in this work is good. The range of the

Reynolds number based on the blade width �Rex �
xnc��NDI�2ÿnc�c=Kc� for these systems is from 132 to

649. As shown in Fig. 5, the data for System II (2.0% agar

solution (dispersed)±salad oil (continuous) system) also

agree well with the predictions of the proposed model.

For this system, the range of the Reynolds number

�Rex � x��NDI��d=�app d� is from 473 to 1040.

The comparisons of the experimental data at high Rey-

nolds numbers for water, 0.01%CMC and 0.01%XG with

the theoretical predictions obtained by Eqs. (3), (4), (9) and

(10) are illustrated in Figs. 6 and 7. The full lines represent

the results calculated from the proposed model. For water,

the predictions of the turbulent boundary-layer stress model

agree reasonably well.

In Fig. 6, for reference, the correlations for Newtonian

¯uids in the literature are also plotted. Chen and Middleman

[27] obtained an empirical correlation for D32 as

D32

DI

� 0:53 D3
I N2 �c

�

� �ÿ0:6
(15)

Considering the values of Dmax/D32 examined by Calabrese

et al. [18], which are based on their data and the results of

Chen and Middleman [27] and are given in Table 3 of their

paper, we assumed that Dmax � 1.67D32 and calculated

Dmax using the above equation.

Recently, Kuriyama et al. [28] proposed the following

equation

8:7� 10ÿ3Weÿ1 D32

DI

� �ÿ5=3

�1:1� 10ÿ2Reÿ1Weÿ1=2 �d

�c

� �
� �c

�d

� �1=2
D32

DI

� �ÿ13=6

� 1 (16)

Fig. 4. Maximum drop diameter as a function of the impeller speed for the

palm oil (dispersed)±glycerol (continuous), ±0.5%CMC and ±0.50%XG

system.

Fig. 5. Maximum drop diameter as a function of the impeller speed for the

agar solution (dispersed)±salad oil (continuous) system.

Fig. 6. Maximum drop diameter as a function of the impeller speed for the

palm oil (dispersed)±water (continuous) system.

Fig. 7. Maximum drop diameter as a function of the impeller speed for the

palm oil (dispersed)±0.01%CMC (continuous) and ±0.01%XG system.
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They also proposed

Dmax � 1:6D32 (17)

It is seen from Fig. 6 that the proposed model lies between

the correlations of Chen and Middleman [27] (Eq. (15)) and

Kuriyama et al. [28] (Eqs. (16) and (17)). The predictions

obtained by the proposed model and the correlations of

Chen and Middleman [27] and Kuriyama et al. [28] are in

close agreement.

From Fig. 7, it can be seen that the experimental results

for low viscosity solutions, 0.01%CMC and 0.01%XG, are

in reasonable agreement with the theoretical predictions. The

Reynolds number range for water is from 14 200 to 33 200,

whereas that for dilute aqueous solutions of CMC and XG is

from 2550 to 11 600. As described above, we assumed that the

proportionality coef®cient C in Eq. (13) was tentatively given

by Eq. (14). In order to examine the generality of Eq. (14),

more systematic studies may be required.

By assuming a linear relationship between Dmax and D32

in the literature and ®tting the present data, we obtain the

following relationship (Fig. 8)

Dmax � 1:67D32 (18)

Fig. 8 shows that the linear relation is veri®ed for New-

tonian and non-Newtonian ¯uid systems in the whole

Reynolds number region. The proportionality constant in

the above correlation has been found to vary from 1.43 to

2.63 in the literature [14]. For Newtonian and non-New-

tonian systems, experimental results con®rm the assumption

that the Sauter mean drop diameter is proportional to the

maximum drop diameter. Furthermore, the proportionality

constant seems to be independent of non-Newtonian ¯ow

behaviour.

Typical cumulative volume fractions for System I are

given in Fig. 9(a)±(c). The ®gures indicate that the cumu-

lative volume fraction curves move consistently to the left

with impeller speed. This suggests that the drop breakage

rate increases with impeller speed. By increasing the impel-

ler speed or the shear stress, the cumulative volume fraction

becomes narrow. Results for the drop size distribution are

compared with the correlation obtained by Calabrese et al.

[29]. They proposed the following correlation for the drop

size distribution in Newtonian ¯uid systems

Fv
D

D32

� �
� 0:5 1� erf

D=D32 ÿ 1:07

0:23
���
2
p

� �� �
(19)

Fig. 8. Dmax vs. D32.

Fig. 9. (a) Drop size distribution for the palm oil (dispersed)±water

(continuous) system. (b) Drop size distribution for the palm oil

(dispersed)±0.05%CMC (continuous) system. (c) Drop size distribution

for the palm oil (dispersed)±0.15%CMC (continuous) system.
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It is seen from Fig. 9(a) that the drop size distributions for

water are reasonably correlated by Eq. (19). For highly

viscous non-Newtonian liquid systems, however, the drop

size distributions considerably deviate from the predictions

of Eq. (19) at lower impeller speeds, as shown in Fig. 9(b)

and (c). This result suggests that non-Newtonian ¯ow

behaviour broadens the drop size distributions. The size

of the smallest drops decreases, while their number

increases. In non-Newtonian continuous phases, a drop

usually breaks into rather large drops and very small drops,

rather than equal-sized daughter drops, and long ®laments

or tails formed behind drops may also result in the formation

of very small drops [30,31]. The size of the largest drops

increases, while their number decreases. By maintaining

low dispersed phase fractions, the minimization of coales-

cence events was assumed. However, some coalescence is

expected to occur in the viscous non-Newtonian liquids.

Additional experiments are in progress to examine stochas-

tic drop break-up and coalescence in more detail and to

develop a correlation for the drop size distributions for non-

Newtonian systems. As shown in Fig. 10, the experimental

data for D in System II agree well with the correlation of

Calabrese et al. [29]. The non-Newtonian ¯ow behaviour of

the dispersed phase has an insigni®cant effect on the drop

break-up for the systems used in this study.

5. Conclusions

Measurement of the drop sizes and drop size distributions

in a stirred tank with non-Newtonian ¯uid systems was

performed. By maintaining a low volume fraction of the

dispersed phase, the drop sizes were assumed to depend on

breakage and to be independent of coalescence. The max-

imum drop size increased with increasing non-Newtonian

behaviour of the continuous phase. New models based on

the boundary-layer shear stress mechanism have been devel-

oped for non-Newtonian laminar and turbulent ¯ow ®elds.

The proposed models for the laminar and turbulent ¯ow

regions were in reasonable agreement with the present

experimental data for drop break-up in non-Newtonian

systems. It may be concluded, therefore, that the proposed

models suggested here will be useful for estimating shear

stress and drop size in liquid±liquid dispersions under non-

coalescing conditions for Newtonian and non-Newtonian

¯uid systems. It should be emphasized that idealizations

have been made in the development of the models, because

the actual ¯ow is highly complicated. Experimental mea-

surements con®rm that the relationship between the Sauter

mean drop diameter and the maximum drop diameter is

linear and almost independent of the non-Newtonian ¯ow

behaviour. The proportionality coef®cient found in this

work is within the range of values reported in the available

literature. The non-Newtonian ¯ow behaviour of the con-

tinuous phase led to a widening of the drop size distribution.

In order to de®ne the region in which the proposed model for

drop break-up is applicable, additional work is required.

Discussion in this study is limited to dilute suspensions for

which coalescence is negligible. For concentrated disper-

sions, however, break-up and coalescence of drops occur

simultaneously. This problem will be studied in the future.

Furthermore, experiments with alternative geometries are

desirable. This study should be regarded as the ®rst attempt

to understand drop breakage in non-Newtonian ¯uid

systems.

6. Nomenclature

C proportionality coefficient in Eq. (13)

D drop diameter (m)

DI impeller diameter (m)

Dmax maximum stable drop diameter (m)

DT tank diameter (m)

D32 Sauter mean drop diameter (m)

Fv cumulative volume frequency

f(�d/�c) viscosity ratio correction factor

K consistency index in a power-law model (Pa sn)

ks proportionality constant in (5)

N impeller speed (sÿ1)

n flow index in a power-law model

U velocity (m sÿ1)

x impeller blade width (m)

Greek letters

� function defined by Eq. (11)

� function defined by Eq. (12)

� boundary layer thickness (m)

� volume fraction of dispersed phase

_
 shear rate (sÿ1)

� viscosity (Pa s)

� density (kg mÿ3)

� interfacial tension (N mÿl)

Fig. 10. Drop size distribution for the agar solution (dispersed)±salad oil

(continuous) system.
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� shear stress (Pa)


 function used in Eq. (10)

	 function used in Eq. (10)

Superscript

± responsible for drop break-up

Subscripts

app apparent

c continuous phase

d dispersed phase

EXP experimental

laminar laminar flow field

PRE predicted

turbulent turbulent flow field
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